
Centered Remainder Representation for Ring Buffer Correction

© 2026 Rudolf Stepan. This work is licensed under CC BY 4.0. DOI: 10.5281/zenodo.17897540 1

Date of publication: January 10, 2026.

Centered Remainder Representation for Ring
Buffer Correction in System-Level Code

Rudolf Stepan1
1Independent Researcher, Vienna, Austria

Corresponding author: Rudolf Stepan (e-mail: rstepan@outlook.at).

ORCID: 0009-0004-2842-2579

ABSTRACT — Ring buffers are a fundamental data structure in system-level software, widely used in audio

pipelines, network stacks, device drivers, and real-time processing systems. Their state update logic is

typically implemented using modulo-based correction, which constrains indices to a non-negative remainder

interval. While functionally correct, this approach introduces an implicit asymmetry at the wrap boundary

and separates the notion of state from its correction.

This paper presents a practical reformulation of ring buffer index correction based on centered remainder

interpretation. Instead of treating wrap-around as a reset into a non-negative interval, deviations are

interpreted as signed correction terms within a centered range. The proposed formulation does not alter the

underlying data structure, memory layout, or semantics of the ring buffer.

It solely changes how index correction is expressed and reasoned about. Using production-style code patterns,

we show that centered correction yields a more symmetric, local, and conceptually uniform update rule. The

approach reduces boundary special cases and provides a clearer mental model for reasoning about state

evolution in circular structures. The formulation is grounded in the general framework of centered remainder

arithmetic as described in REIST Division, but is presented here as a concrete, standalone implementation

pattern for system-level software.

INDEX TERMS — Circular buffers, centered remainder representation, modulo correction, system-level

software, ring buffer implementation.

I. INTRODUCTION

Ring buffers, also referred to as circular buffers, are among

the most widely used data structures in low-level and

performance-critical software. They appear in operating

systems, device drivers, interrupt handlers, audio and video

processing pipelines, network stacks, and lock-free

communication queues. Despite their conceptual

simplicity, ring buffers frequently contain subtle correction

logic that is both error-prone and difficult to reason about

under non-trivial update patterns.

In most implementations, the buffer index is constrained to

a non-negative interval using modulo arithmetic. This

formulation enforces a wrap-around behavior that resets the

index to the beginning of the buffer once the upper bound

is exceeded. While this approach is well established and

functionally correct, it introduces an implicit asymmetry at

the wrap boundary and treats correction as an exceptional

operation rather than an integral part of the state update.

This paper argues that many of these issues stem not from

the data structure itself, but from how the remainder of

index updates is interpreted. By adopting a centered

remainder representation, the correction can be expressed

symmetrically around zero, making wrap-around a signed

adjustment rather than a directional reset.

This interpretation aligns naturally with how developers

reason about deviations, offsets, and error terms in system

code.

The contribution of this work is not a new data structure or

algorithm. Instead, it provides a practical, production-

oriented formulation of ring buffer correction using

centered remainders. The approach is compatible with

existing implementations and requires no changes to

memory layout or access patterns.

Centered Remainder Representation for Ring Buffer Correction

© 2026 Rudolf Stepan. This work is licensed under CC BY 4.0. DOI: 10.5281/zenodo.17897540 2

II. Classical Ring Buffer Correction
A ring buffer of size 𝑁typically maintains an index variable

that identifies the current position within the buffer.

Updates to this index are often expressed as an increment

or decrement by some offset Δ, followed by a correction

step that ensures the index remains within valid bounds.

A common implementation relies on modulo arithmetic:

head = (head + delta) % N;

if (head < 0)

 head += N;

In performance-critical code, the modulo operator is often

avoided, leading to manual correction logic:

head += delta;

while (head >= N)

 head -= N;

while (head < 0)

 head += N;

These patterns are ubiquitous in production systems. They

are correct, well understood, and widely deployed.

However, they encode several implicit assumptions:

1. The valid state space is the half-open interval [0, 𝑁).
2. Correction is directional, folding all deviations back

into this interval.

3. The wrap boundary at 0 and 𝑁is a privileged

location in the state space.

As a result, the index variable represents both the logical

position in the buffer and the corrected remainder,

conflating state and correction into a single value. While

this is acceptable for simple update patterns, it complicates

reasoning when offsets vary in magnitude or sign, and it

introduces boundary-centric logic that must be handled

explicitly.

III. Centered Remainder Interpretation

An alternative perspective is to treat index correction not as

a reset into a non-negative interval, but as a signed

adjustment applied to an otherwise continuous state. This

can be achieved by representing the remainder in a centered

interval:

(−
𝑁

2
,
𝑁

2
]

Within this interpretation, wrap-around is expressed as a

correction of magnitude ±𝑁, rather than a transition to a

fixed boundary. Deviations are treated symmetrically, and

no boundary is inherently special.

This idea corresponds to the centered remainder framework

formalized in REIST Division, where the remainder is

explicitly modeled as a signed correction term rather than a

passive residue. In the context of ring buffers, this

interpretation provides a more uniform model of state

evolution without altering the underlying modulo-𝑁

semantics.

Importantly, the centered representation does not change

the equivalence class of the index modulo 𝑁. It merely

changes how deviations from the canonical range are

expressed and corrected.

IV. Ring Buffer Implementation with Centered

Correction

Using the centered remainder interpretation, the ring buffer

update logic can be expressed as follows:

head += delta;

if (head > N / 2)

 head -= N;

if (head < -N / 2)

 head += N;

Alternatively, the correction can be made explicit:

int error = head + delta;

if (error > N / 2)

 error -= N;

if (error < -N / 2)

 error += N;

head = error;

This formulation preserves all essential properties of the

ring buffer:

• The buffer size remains 𝑁.

• Memory access is still performed modulo 𝑁.

• No additional state is introduced.

• The data structure and semantics are unchanged.

The only difference lies in how correction is expressed.

Instead of forcing the index into a non-negative range,

deviations are allowed to exist temporarily as signed values

and are corrected symmetrically when they exceed half the

buffer size.

V. Practical Implications

The centered correction model offers several practical

advantages that are immediately visible in code, without

requiring performance measurements.

Centered Remainder Representation for Ring Buffer Correction

© 2026 Rudolf Stepan. This work is licensed under CC BY 4.0. DOI: 10.5281/zenodo.17897540 3

First, correction becomes symmetric. Positive and negative

deviations are handled uniformly, and no special treatment

is required for the lower or upper boundary.

Second, the wrap boundary loses its privileged status.

There is no distinguished “reset point”; correction is

applied purely based on magnitude.

Third, the mental model becomes simpler. The index

represents a local deviation within a bounded range, rather

than a position that must always be forced into a canonical

interval.

Finally, boundary-related special cases are reduced. This is

particularly relevant in systems where offsets may vary

dynamically or where index updates are composed across

multiple stages.

These properties make the centered formulation easier to

reason about, review, and maintain in system-level code.

VI. Relation to REIST Division

The formulation presented in this paper is a concrete

application of the centered remainder framework described

in REIST Division. While REIST Division provides a

general treatment of centered remainders and their

implementation-oriented interpretation, the present work

focuses exclusively on a single, widely used system pattern.

This paper does not introduce new arithmetic rules or

extend the formalism. Instead, it demonstrates how the

REIST interpretation can be applied directly to existing

production code without changing data structures, APIs, or

semantics.

Ring buffers serve as a representative example of a broader

class of systems that rely on modulo-based correction.

Similar reasoning applies to phase accumulators, periodic

schedulers, and cyclic counters, but these are beyond the

scope of the present discussion.

VII. Conclusion

This paper has shown that ring buffer correction can be

reformulated using a centered remainder interpretation

without altering the underlying data structure or semantics.

By treating wrap-around as a signed correction rather than

a directional reset, the update logic becomes symmetric,

local, and conceptually uniform.

The contribution is intentionally practical. No benchmarks

are required to observe the benefit, as the improvement lies

in reasoning clarity and structural simplicity rather than raw

performance. The approach integrates naturally with

existing system code and aligns with established

production patterns.

Centered remainder correction provides a clearer and more

robust way to express cyclic state updates in system-level

software and represents a practical application of the

REIST Division framework.

References

[1] D. E. Knuth, The Art of Computer Programming, Vol.

2: Seminumerical Algorithms, 3rd ed. Reading, MA,

USA: Addison-Wesley, 1997.

[2] R. P. Brent and P. Zimmermann, Modern Computer

Arithmetic. Cambridge, U.K.: Cambridge University

Press, 2010.

[3] J. Hennessy and D. Patterson, Computer Architecture:

A Quantitative Approach, 6th ed. San Mateo, CA, USA:

Morgan Kaufmann, 2019.

[4] B. Lamport, “Concurrent Reading and Writing,”

Communications of the ACM, vol. 20, no. 11, pp. 806–

811, Nov. 1977.

[5] Stepan, R. (2025). REIST Division: An

Implementation-Oriented Framing of Centered

Remainder Arithmetic for Modular Addition (2.0).

Zenodo. https://doi.org/10.5281/zenodo.17897540

