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ABSTRACT — Ring buffers are a fundamental data structure in system-level software, widely used in audio 

pipelines, network stacks, device drivers, and real-time processing systems. Their state update logic is 

typically implemented using modulo-based correction, which constrains indices to a non-negative remainder 

interval. While functionally correct, this approach introduces an implicit asymmetry at the wrap boundary 

and separates the notion of state from its correction. 

This paper presents a practical reformulation of ring buffer index correction based on centered remainder 

interpretation. Instead of treating wrap-around as a reset into a non-negative interval, deviations are 

interpreted as signed correction terms within a centered range. The proposed formulation does not alter the 

underlying data structure, memory layout, or semantics of the ring buffer. 

It solely changes how index correction is expressed and reasoned about. Using production-style code patterns, 

we show that centered correction yields a more symmetric, local, and conceptually uniform update rule. The 

approach reduces boundary special cases and provides a clearer mental model for reasoning about state 

evolution in circular structures. The formulation is grounded in the general framework of centered remainder 

arithmetic as described in REIST Division, but is presented here as a concrete, standalone implementation 

pattern for system-level software. 

INDEX TERMS — Circular buffers, centered remainder representation, modulo correction, system-level 

software, ring buffer implementation.

I. INTRODUCTION 

Ring buffers, also referred to as circular buffers, are among 

the most widely used data structures in low-level and 

performance-critical software. They appear in operating 

systems, device drivers, interrupt handlers, audio and video 

processing pipelines, network stacks, and lock-free 

communication queues. Despite their conceptual 

simplicity, ring buffers frequently contain subtle correction 

logic that is both error-prone and difficult to reason about 

under non-trivial update patterns. 

 

In most implementations, the buffer index is constrained to 

a non-negative interval using modulo arithmetic. This 

formulation enforces a wrap-around behavior that resets the 

index to the beginning of the buffer once the upper bound 

is exceeded. While this approach is well established and 

functionally correct, it introduces an implicit asymmetry at 

the wrap boundary and treats correction as an exceptional 

operation rather than an integral part of the state update. 

 

This paper argues that many of these issues stem not from 

the data structure itself, but from how the remainder of 

index updates is interpreted. By adopting a centered 

remainder representation, the correction can be expressed 

symmetrically around zero, making wrap-around a signed 

adjustment rather than a directional reset. 

 

This interpretation aligns naturally with how developers 

reason about deviations, offsets, and error terms in system 

code. 

 

The contribution of this work is not a new data structure or 

algorithm. Instead, it provides a practical, production-

oriented formulation of ring buffer correction using 

centered remainders. The approach is compatible with 

existing implementations and requires no changes to 

memory layout or access patterns. 
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II. Classical Ring Buffer Correction 
A ring buffer of size 𝑁typically maintains an index variable 

that identifies the current position within the buffer. 

Updates to this index are often expressed as an increment 

or decrement by some offset Δ, followed by a correction 

step that ensures the index remains within valid bounds. 

 

A common implementation relies on modulo arithmetic: 

head = (head + delta) % N; 

if (head < 0) 

    head += N; 

In performance-critical code, the modulo operator is often 

avoided, leading to manual correction logic: 

head += delta; 

while (head >= N) 

    head -= N; 

while (head < 0) 

    head += N; 

These patterns are ubiquitous in production systems. They 

are correct, well understood, and widely deployed. 

However, they encode several implicit assumptions: 

 

1. The valid state space is the half-open interval [0, 𝑁). 
2. Correction is directional, folding all deviations back 

into this interval. 

3. The wrap boundary at 0 and 𝑁is a privileged 

location in the state space. 

 

As a result, the index variable represents both the logical 

position in the buffer and the corrected remainder, 

conflating state and correction into a single value. While 

this is acceptable for simple update patterns, it complicates 

reasoning when offsets vary in magnitude or sign, and it 

introduces boundary-centric logic that must be handled 

explicitly. 

 
III. Centered Remainder Interpretation 

An alternative perspective is to treat index correction not as 

a reset into a non-negative interval, but as a signed 

adjustment applied to an otherwise continuous state. This 

can be achieved by representing the remainder in a centered 

interval: 
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Within this interpretation, wrap-around is expressed as a 

correction of magnitude ±𝑁, rather than a transition to a 

fixed boundary. Deviations are treated symmetrically, and 

no boundary is inherently special. 

This idea corresponds to the centered remainder framework 

formalized in REIST Division, where the remainder is 

explicitly modeled as a signed correction term rather than a 

passive residue. In the context of ring buffers, this 

interpretation provides a more uniform model of state 

evolution without altering the underlying modulo-𝑁 

semantics. 

Importantly, the centered representation does not change 

the equivalence class of the index modulo 𝑁. It merely 

changes how deviations from the canonical range are 

expressed and corrected. 

 
IV. Ring Buffer Implementation with Centered 

Correction 

Using the centered remainder interpretation, the ring buffer 

update logic can be expressed as follows: 

head += delta; 

if (head >  N / 2) 

    head -= N; 

if (head < -N / 2) 

    head += N; 

 

Alternatively, the correction can be made explicit: 

int error = head + delta; 

if (error >  N / 2) 

    error -= N; 

if (error < -N / 2) 

    error += N; 

head = error; 

 

This formulation preserves all essential properties of the 

ring buffer: 

 

• The buffer size remains 𝑁. 

• Memory access is still performed modulo 𝑁. 

• No additional state is introduced. 

• The data structure and semantics are unchanged. 

 

The only difference lies in how correction is expressed. 

Instead of forcing the index into a non-negative range, 

deviations are allowed to exist temporarily as signed values 

and are corrected symmetrically when they exceed half the 

buffer size. 

 
V. Practical Implications 

The centered correction model offers several practical 

advantages that are immediately visible in code, without 

requiring performance measurements. 
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First, correction becomes symmetric. Positive and negative 

deviations are handled uniformly, and no special treatment 

is required for the lower or upper boundary. 

 

Second, the wrap boundary loses its privileged status. 

There is no distinguished “reset point”; correction is 

applied purely based on magnitude. 

 

Third, the mental model becomes simpler. The index 

represents a local deviation within a bounded range, rather 

than a position that must always be forced into a canonical 

interval. 

 

Finally, boundary-related special cases are reduced. This is 

particularly relevant in systems where offsets may vary 

dynamically or where index updates are composed across 

multiple stages. 

 

These properties make the centered formulation easier to 

reason about, review, and maintain in system-level code. 

 
VI. Relation to REIST Division 

The formulation presented in this paper is a concrete 

application of the centered remainder framework described 

in REIST Division. While REIST Division provides a 

general treatment of centered remainders and their 

implementation-oriented interpretation, the present work 

focuses exclusively on a single, widely used system pattern. 

 

This paper does not introduce new arithmetic rules or 

extend the formalism. Instead, it demonstrates how the 

REIST interpretation can be applied directly to existing 

production code without changing data structures, APIs, or 

semantics. 

 

Ring buffers serve as a representative example of a broader 

class of systems that rely on modulo-based correction. 

Similar reasoning applies to phase accumulators, periodic 

schedulers, and cyclic counters, but these are beyond the 

scope of the present discussion. 

 
VII. Conclusion 

This paper has shown that ring buffer correction can be 

reformulated using a centered remainder interpretation 

without altering the underlying data structure or semantics. 

By treating wrap-around as a signed correction rather than 

a directional reset, the update logic becomes symmetric, 

local, and conceptually uniform. 

 

The contribution is intentionally practical. No benchmarks 

are required to observe the benefit, as the improvement lies 

in reasoning clarity and structural simplicity rather than raw 

performance. The approach integrates naturally with 

existing system code and aligns with established 

production patterns. 

Centered remainder correction provides a clearer and more 

robust way to express cyclic state updates in system-level 

software and represents a practical application of the 

REIST Division framework. 

 
References 

[1] D. E. Knuth, The Art of Computer Programming, Vol. 

2: Seminumerical Algorithms, 3rd ed. Reading, MA, 

USA: Addison-Wesley, 1997. 

 

[2] R. P. Brent and P. Zimmermann, Modern Computer   

Arithmetic. Cambridge, U.K.: Cambridge University 

Press, 2010. 

 

[3] J. Hennessy and D. Patterson, Computer Architecture: 

A Quantitative Approach, 6th ed.  San Mateo, CA, USA: 

Morgan Kaufmann, 2019. 

 

[4] B. Lamport, “Concurrent Reading and Writing,” 

Communications of the ACM, vol. 20, no. 11, pp. 806–

811, Nov. 1977. 

 

[5] Stepan, R. (2025). REIST Division: An 

Implementation-Oriented Framing of Centered 

Remainder Arithmetic for Modular Addition (2.0). 

Zenodo. https://doi.org/10.5281/zenodo.17897540 
 


