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ABSTRACT — Ring buffers are a fundamental data structure in system-level software, widely used in audio
pipelines, network stacks, device drivers, and real-time processing systems. Their state update logic is
typically implemented using modulo-based correction, which constrains indices to a non-negative remainder
interval. While functionally correct, this approach introduces an implicit asymmetry at the wrap boundary
and separates the notion of state from its correction.

This paper presents a practical reformulation of ring buffer index correction based on centered remainder
interpretation. Instead of treating wrap-around as a reset into a non-negative interval, deviations are
interpreted as signed correction terms within a centered range. The proposed formulation does not alter the
underlying data structure, memory layout, or semantics of the ring buffer.

It solely changes how index correction is expressed and reasoned about. Using production-style code patterns,
we show that centered correction yields a more symmetric, local, and conceptually uniform update rule. The
approach reduces boundary special cases and provides a clearer mental model for reasoning about state
evolution in circular structures. The formulation is grounded in the general framework of centered remainder
arithmetic as described in REIST Division, but is presented here as a concrete, standalone implementation
pattern for system-level software.

INDEX TERMS — Circular buffers, centered remainder representation, modulo correction, system-level
software, ring buffer implementation.

I. INTRODUCTION

Ring buffers, also referred to as circular buffers, are among
the most widely used data structures in low-level and
performance-critical software. They appear in operating
systems, device drivers, interrupt handlers, audio and video
processing pipelines, network stacks, and lock-free
communication queues. Despite their conceptual
simplicity, ring buffers frequently contain subtle correction
logic that is both error-prone and difficult to reason about
under non-trivial update patterns.

In most implementations, the buffer index is constrained to
a non-negative interval using modulo arithmetic. This
formulation enforces a wrap-around behavior that resets the
index to the beginning of the buffer once the upper bound
is exceeded. While this approach is well established and
functionally correct, it introduces an implicit asymmetry at
the wrap boundary and treats correction as an exceptional
operation rather than an integral part of the state update.

This paper argues that many of these issues stem not from
the data structure itself, but from how the remainder of
index updates is interpreted. By adopting a centered
remainder representation, the correction can be expressed
symmetrically around zero, making wrap-around a signed
adjustment rather than a directional reset.

This interpretation aligns naturally with how developers
reason about deviations, offsets, and error terms in system
code.

The contribution of this work is not a new data structure or
algorithm. Instead, it provides a practical, production-
oriented formulation of ring buffer correction using
centered remainders. The approach is compatible with
existing implementations and requires no changes to
memory layout or access patterns.
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Il. Classical Ring Buffer Correction

A ring buffer of size Ntypically maintains an index variable
that identifies the current position within the buffer.
Updates to this index are often expressed as an increment
or decrement by some offset A, followed by a correction
step that ensures the index remains within valid bounds.

A common implementation relies on modulo arithmetic:

head = (head + delta) % N;
if (head < 0)
head += N;

In performance-critical code, the modulo operator is often
avoided, leading to manual correction logic:

head += delta;

while (head >= N)
head -= N;

while (head < 0)
head += N;

These patterns are ubiquitous in production systems. They
are correct, well understood, and widely deployed.
However, they encode several implicit assumptions:

~

The valid state space is the half-open interval [0, N).

2. Correction is directional, folding all deviations back
into this interval.

3. The wrap boundary at 0 and Nis a privileged

location in the state space.

As a result, the index variable represents both the logical
position in the buffer and the corrected remainder,
conflating state and correction into a single value. While
this is acceptable for simple update patterns, it complicates
reasoning when offsets vary in magnitude or sign, and it
introduces boundary-centric logic that must be handled
explicitly.

lll. Centered Remainder Interpretation
An alternative perspective is to treat index correction not as
a reset into a non-negative interval, but as a signed
adjustment applied to an otherwise continuous state. This
can be achieved by representing the remainder in a centered
interval:

( N N

2’2

Within this interpretation, wrap-around is expressed as a
correction of magnitude =N, rather than a transition to a
fixed boundary. Deviations are treated symmetrically, and
no boundary is inherently special.

This idea corresponds to the centered remainder framework
formalized in REIST Division, where the remainder is
explicitly modeled as a signed correction term rather than a
passive residue. In the context of ring buffers, this
interpretation provides a more uniform model of state
evolution without altering the underlying modulo-N
semantics.

Importantly, the centered representation does not change
the equivalence class of the index modulo N. It merely
changes how deviations from the canonical range are
expressed and corrected.

IV. Ring Buffer Implementation with Centered
Correction

Using the centered remainder interpretation, the ring buffer
update logic can be expressed as follows:

head += delta;

if (head > N / 2)
head -= N;

if (head < -N / 2)
head += N;

Alternatively, the correction can be made explicit:

int error = head + delta;
N/ 2)

error -= N;

if (error >

if (error < -N / 2)

error += N;

head = error;

This formulation preserves all essential properties of the
ring buffer:

The buffer size remains N.

Memory access is still performed modulo N.

No additional state is introduced.

The data structure and semantics are unchanged.

The only difference lies in how correction is expressed.
Instead of forcing the index into a non-negative range,
deviations are allowed to exist temporarily as signed values
and are corrected symmetrically when they exceed half the
buffer size.

V. Practical Implications

The centered correction model offers several practical
advantages that are immediately visible in code, without
requiring performance measurements.
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First, correction becomes symmetric. Positive and negative
deviations are handled uniformly, and no special treatment
is required for the lower or upper boundary.

Second, the wrap boundary loses its privileged status.
There is no distinguished “reset point”; correction is
applied purely based on magnitude.

Third, the mental model becomes simpler. The index
represents a local deviation within a bounded range, rather
than a position that must always be forced into a canonical
interval.

Finally, boundary-related special cases are reduced. This is
particularly relevant in systems where offsets may vary
dynamically or where index updates are composed across
multiple stages.

These properties make the centered formulation easier to
reason about, review, and maintain in system-level code.

VI. Relation to REIST Division

The formulation presented in this paper is a concrete
application of the centered remainder framework described
in REIST Division. While REIST Division provides a
general treatment of centered remainders and their
implementation-oriented interpretation, the present work
focuses exclusively on a single, widely used system pattern.

This paper does not introduce new arithmetic rules or
extend the formalism. Instead, it demonstrates how the
REIST interpretation can be applied directly to existing
production code without changing data structures, APIs, or
semantics.

Ring buffers serve as a representative example of a broader
class of systems that rely on modulo-based correction.
Similar reasoning applies to phase accumulators, periodic
schedulers, and cyclic counters, but these are beyond the
scope of the present discussion.

VII. Conclusion

This paper has shown that ring buffer correction can be
reformulated using a centered remainder interpretation
without altering the underlying data structure or semantics.
By treating wrap-around as a signed correction rather than
a directional reset, the update logic becomes symmetric,
local, and conceptually uniform.

The contribution is intentionally practical. No benchmarks
are required to observe the benefit, as the improvement lies
in reasoning clarity and structural simplicity rather than raw
performance. The approach integrates naturally with
existing system code and aligns with established
production patterns.

Centered remainder correction provides a clearer and more
robust way to express cyclic state updates in system-level
software and represents a practical application of the
REIST Division framework.
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